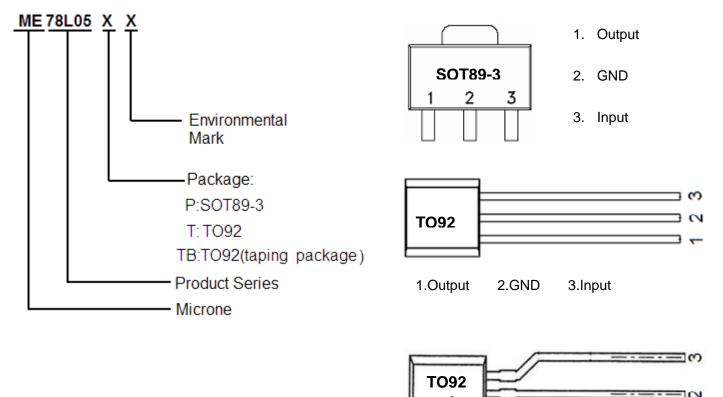


# **3-Terminal Positive Voltage Regulator ME78L05**

#### **General Description**


ME78L05 is three-terminal positive regulators. One of these regulators can deliver up to 100 mA of output current. The internal limiting and thermal -shutdown features of the regulator make them essentially immune to overload. When used as a replacement for a zener diode-resistor Combination, an effective improvement in output impedance can be obtained, together with lower quiescent current.

#### **Selection Guide**

#### Features

- •Output Current of 100mA
- •Output Voltages of 5V±5% over the temperature range
- Thermal Overload Protection
- •Short Circuit Protection
- •Output transistor safe area protection
- No external components
- •Package: SOT89-3 and TO92(Taping Package)

#### **Pin Configuration**



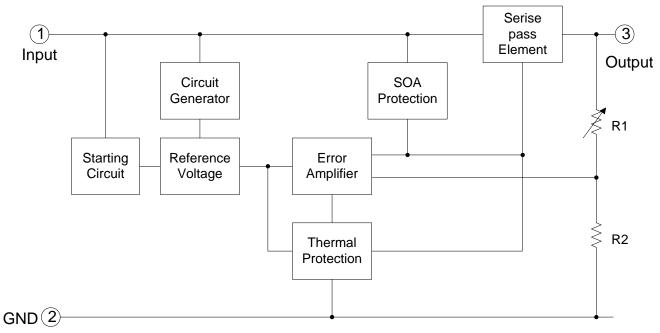
taping

1.Output

2.GND

3.Input




#### Maximum Ratings(Ta=25℃)

| Parameter                             | Rating                 | Unit |
|---------------------------------------|------------------------|------|
| Input supply voltage : VIN            | 30                     | V    |
| MAX. Output current:lout              | 100                    | mA   |
| Max Power:Pmax                        | 0.35                   | W    |
| Maximum junction temperature: Tj      | -25~125                | °C   |
| Storage temperature :T <sub>str</sub> | -55~150                | °C   |
| Soldering temperature and time        | +260 (Recommended 10S) | °C   |

Caution: The absolute maximum ratings are rated values exceeding which the product could suffer physical damage.

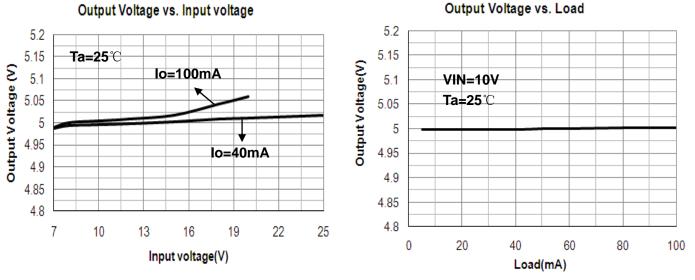
These values must therefore not be exceeded under any conditions.

#### **Block Diagram**





#### **Electrical Characteristics**


| Parameter            | Symbol          | Conditions                                         | Min. | Тур. | Max. | Unit  |
|----------------------|-----------------|----------------------------------------------------|------|------|------|-------|
|                      |                 | I <sub>O</sub> =40mA, VIN=10V                      | 4.82 | 5.0  | 5.18 |       |
| Output Voltage       | Vo              | I <sub>0</sub> =1mA∼40mA<br>VIN=7V∼20V             | 4.8  | 5.0  | 5.2  | V     |
|                      |                 | I <sub>O</sub> =1mA~10mA<br>VIN=10V                | 4.75 | 5.0  | 5.25 |       |
| Line Regulations     | LNR             | VIN=7V~20V,I <sub>O</sub> =40mA                    | -150 | -    | 150  | mV    |
|                      | LINIX           | VIN=8V~20V,I <sub>O</sub> =40mA                    | -100 | -    | 100  | IIIV  |
| Load Regulation      | LDR             | VIN=10V,I <sub>O</sub> =1mA-100mA                  | -60  | -    | 60   | mV    |
| Load Regulation      | LDR             | VIN=10V,I <sub>O</sub> =1mA-40mA                   | -30  | -    | 30   | IIIV  |
| Dropout Voltage      | $V_{DIF}$       | Tj=25 <sup>0</sup> C,Io=100mA                      | -    | 2    | -    | V     |
| Output noise Voltage | V <sub>N</sub>  | f=10Hz to 100KHz                                   | -    | 40   | -    | μV/Vo |
| Ripple Rejection     | PSRR            | Tj=25 <sup>0</sup> C,f=120Hz,Io=40mA<br>VIN=8V∼20V | -    | 80   | -    | dB    |
| Peak Output Current  | I <sub>pk</sub> | Tj=25 <sup>0</sup> C                               | -    | 500  | -    | mA    |
| Quiescent Current    | Ι <sub>Q</sub>  | VIN=10V,I <sub>OUT</sub> =40mA                     | -    | -    | 5.5  | mA    |
| Quiescent Current    | ΔΙ              | VIN=8V~20V,I <sub>O</sub> =40mA                    | -1.5 | -    | 1.5  | mA    |
| Change               | Δl <sub>Q</sub> | VIN=10V,I <sub>O</sub> =1mA~40mA,                  | -0.1 | -    | 0.1  | IIIA  |

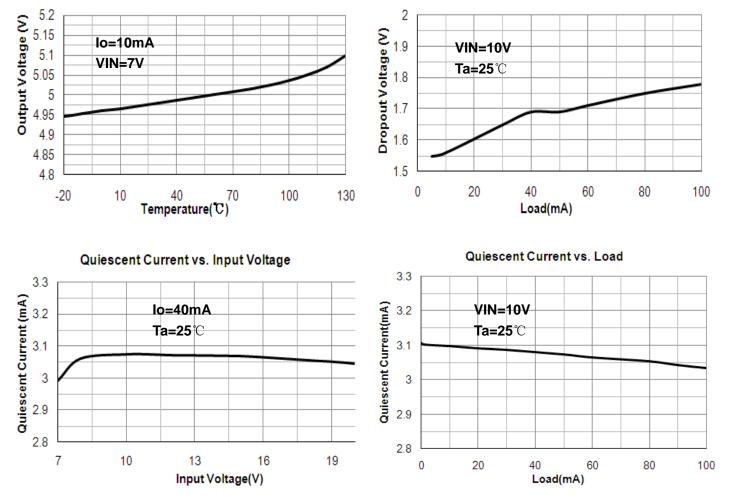
(Cin =0.33 $\mu$ F, Co =0.1 $\mu$ F,0≤Tj≤125<sup>o</sup>C, unless otherwise noted)

LNR: Line Regulation. The change in output voltage for a change in the input voltage. The measurement is made under conditions of low dissipation or by using pulse techniques such that the average chip temperature is not significantly affected.

LDR: Load Regulation. The change in output voltage for a change in load current at constant chip temperature.

#### **Type Characteristics**




#### Output Voltage vs. Input voltage

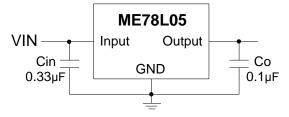


ME78L05

#### Output Voltage vs. Temperature

Dropout Voltage vs. Load




#### **Operation Description**

ME78L05 is designed with Thermal Overload Protection that shuts down the circuit when subjected to an excessive power overload condition, Internal Short Circuit Protection that limits the maximum current the circuit will pass, and Output Transistor Safe-Area Compensation that reduces the output short circuit current as the voltage across the pass transistor is increased.

In many low current applications, compensation capacitors are not required. However, it is recommended that the regulator input be bypassed with a capacitor if the regulator is connected to the power supply filter with long wire lengths, or if the output load capacitance is large. An input bypass capacitor should be selected to provide good high frequency characteristics to insure stable operation under all load conditions. A 0.33µFor larger tantalum, mylar, or other capacitor having low internal impedance at high frequencies should be chosen. The bypass capacitor should be mounted with the shortest possible leads directly across the regulator's input terminals. Normally good construction techniques should be used to minimize ground loops and lead resistance drops since the regulator has no external sense lead.



#### **Typical Application Circuit**



#### Fig.1 Fixed Output Regulator

A common ground is required between the input and the output voltages. The input voltage must remain typically

2.0 V above the output voltage even during the low point on the input ripple voltage.

- •Cin is required if regulator is located an appreciable distance from power supply filter.
- •Co is not needed for stability; however, it does improve transient response.

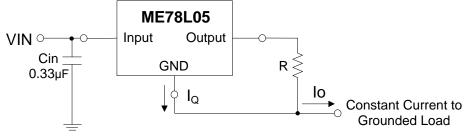
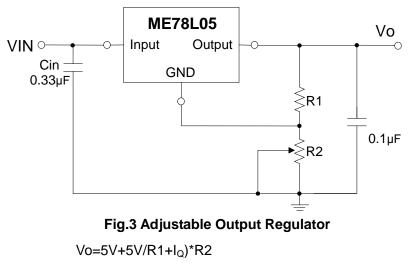
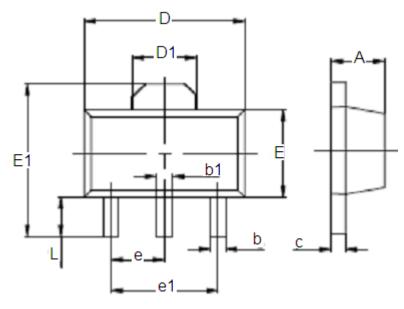




Fig.2 Constant Current Regulator

The ME78L05 regulatorcan also be used as a current source when connected as Fig.2. In order to minimize

dissipation the ME78L05 is chosen in this application. Resistor R determines the current as follows:  $I_0 = \frac{5V}{R} + I_q$ 

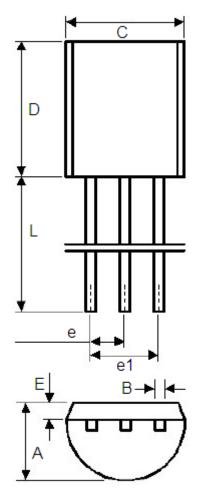



www.microne.com.cn



# Package Information

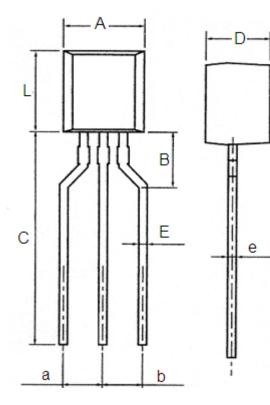
Package Type:SOT89-3 Unit:mm(inch)




| DIM | Millimeters |       | Ir        | iches    |
|-----|-------------|-------|-----------|----------|
| DIM | Min         | Max   | Min       | Max      |
| А   | 1.4         | 1.6   | 0.055     | 0.063    |
| D   | 4.4         | 4.5   | 0.173     | 0.181    |
| D1  | 1.55        | REF   | 0.06REF   |          |
| E   | 2.35        | 2.55  | 0.091     | 0.102    |
| E1  | 3.94        | 4.26  | 0.155     | 0.167    |
| L   | 0.9         | 1.1   | 0.035     | 0.047    |
| b   | 0.35        | 0.52  | 0.013     | 0.197    |
| b1  | 0.4         | 0.58  | 0.016     | 0.023    |
| с   | 0.35        | 0.44  | 0.014     | 0.017    |
| е   | Type:1.5    |       | Type:0.05 |          |
| e1  | Туре        | e:3.0 | Тур       | pe:0.115 |



# ME78L05


# Packaging Type: TO-92 Unit:mm(inch)



|    | Min  | Max  | Min    | Max    |
|----|------|------|--------|--------|
| А  | 3.4  | 3.7  | 0.1338 | 0.1457 |
| В  | 0.36 | 0.5  | 0.0142 | 0.0167 |
| С  | 4.35 | 4.7  | 0.1712 | 0.1850 |
| D  | 4.35 | 4.7  | 0.1712 | 0.1850 |
| E  | 0.9  | 1.5  | 0.0354 | 0.059  |
| е  | 1.17 | 1.37 | 0.046  | 0.0539 |
| e1 | 2.39 | 2.69 | 0.094  | 0.1059 |
| L  | 12   | 16   | 0.4724 | 0.6299 |



### Packaging Type: TO-92 taping package Unit:mm(inch)



|   | Min  | Max  | Min    | Max    |
|---|------|------|--------|--------|
| A | 4.35 | 4.7  | 0.1712 | 0.1850 |
| В | 3.25 | 3.75 | 0.1279 | 0.1476 |
| С | 13.2 | 13.8 | 0.5197 | 0.5433 |
| D | 3.4  | 3.7  | 0.1338 | 0.1457 |
| E | 0.4  | 0.55 | 0.0157 | 0.0216 |
| а | 2.3  | 2.7  | 0.0905 | 0.1063 |
| b | 2.3  | 2.7  | 0.0905 | 0.1063 |
| е | 0.36 | 0.5  | 0.0142 | 0.0167 |
| L | 4.35 | 4.7  | 0.1712 | 0.1850 |



- The information described herein is subject to change without notice.
- Nanjing Micro One Electronics Inc is not responsible for any problems caused by circuits or diagrams described herein whose related industrial properties, patents, or other rights belong to third parties. The application circuit examples explain typical applications of the products, and do not guarantee the success of any specific mass-production design.
- Use of the information described herein for other purposes and/or reproduction or copying without the express permission of Nanjing Micro One Electronics Inc is strictly prohibited.
- The products described herein cannot be used as part of any device or equipment affecting the human body, such as exercise equipment, medical equipment, security systems, gas equipment, or any apparatus installed in airplanes and other vehicles, without prior written permission of Nanjing Micro One Electronics Inc.
- Although Nanjing Micro One Electronics Inc exerts the greatest possible effort to ensure high quality and reliability, the failure or malfunction of semiconductor products may occur. The user of these products should therefore give thorough consideration to safety design, including redundancy, fire-prevention measures, and malfunction prevention, to prevent any accidents, fires, or community damage that may ensue.



# **3-Terminal 0.5A Positive Voltage Regulator ME78M05**

#### **General Description**

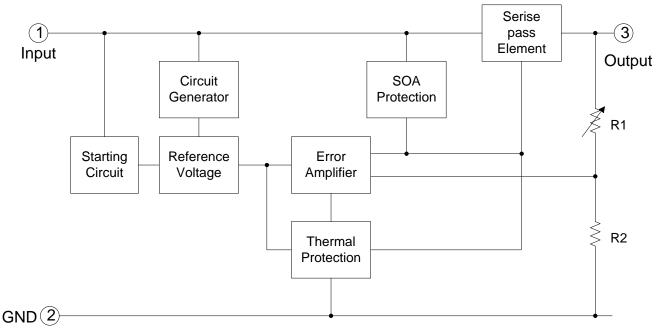
ME78M05 is a three-terminal positive regulator. Internal current limiting, thermal shutdown circuitry and safe-area compensation for the internal pass transistor combine to make these devices remarkably rugged under most operating conditions. Maximum output current, with adequate heat- sinking is 500 mA.

#### **Pin Configuration**

# 1. Input 2. GND 3. Output

#### Maximum Ratings(Ta=25℃)

| Parameter                                    | Rating                 | Unit |
|----------------------------------------------|------------------------|------|
| Input supply voltage : VIN                   | 35                     | V    |
| MAX. Output current:lout                     | 500                    | mA   |
| Maximum junction temperature: T <sub>j</sub> | -25~125                | °C   |
| Storage temperature :T <sub>str</sub>        | -55~150                | °C   |
| Soldering temperature and time               | +260 (Recommended 10S) | °C   |


Caution: The absolute maximum ratings are rated values exceeding which the product could suffer physical damage. These values must therefore not be exceeded under any conditions.

#### Features

- •Output Current up to 0.5A
- Output Voltages of 5V
- •Thermal Overload Protection
- •Short Circuit Protection
- Package: TO252

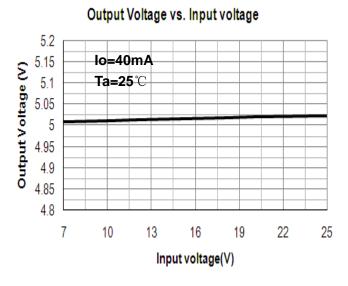


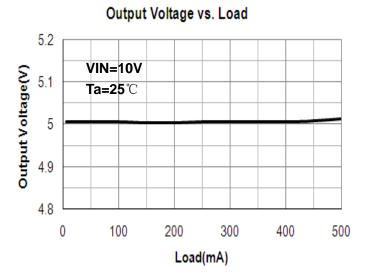
#### **Block Diagram**



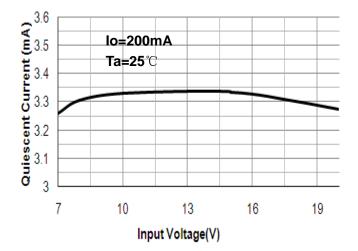
#### **Electrical Characteristics**

(Io =350mA, VIN=10V, $0 \le T \le 125^{\circ}C$ , unless otherwise noted)

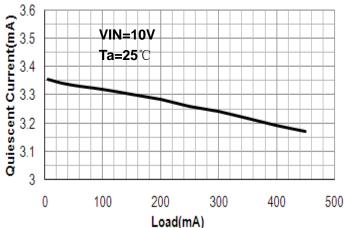

| Parameter            | Symbol           | Conditions                                          | Min. | Тур. | Max. | Unit  |
|----------------------|------------------|-----------------------------------------------------|------|------|------|-------|
|                      |                  | I <sub>O</sub> =40mA, VIN=10V                       | 4.8  | 5.0  | 5.2  |       |
| Output Voltage       | Vo               | I <sub>0</sub> =5mA∼350mA<br>VIN=7V∼20V             | 4.75 | 5.0  | 5.25 | V     |
| Line Regulations     | LNR              | VIN=7V~20V,I <sub>O</sub> =40mA                     | -60  | -    | 60   | mV    |
| Load Regulation      | LDR              | VIN=10V,I <sub>O</sub> =5mA-500mA                   | -100 | -    | 100  | mV    |
| Dropout Voltage      | V <sub>DIF</sub> | Tj=25 <sup>o</sup> C,Io=500mA                       | -    | 2    | -    | V     |
| Output noise Voltage | V <sub>N</sub>   | f=10Hz to 100KHz                                    | -    | 40   | -    | µV/Vo |
| Ripple Rejection     | PSRR             | Tj=25 <sup>o</sup> C,f=120Hz,Io=300mA<br>VIN=8V~20V | -    | 80   | -    | dB    |
| Peak Output Current  | I <sub>pk</sub>  | Tj=25 <sup>o</sup> C                                | -    | 1000 | -    | mA    |
| Quiescent Current    | Ι <sub>Q</sub>   | Tj=25 <sup>o</sup> C                                | -    | 3.2  | 8    | mA    |
| Quiescent Current    | Δl <sub>Q</sub>  | I <sub>O</sub> =5mA-350mA                           | -    | -    | 0.5  | mA    |
| Change               | ΔIQ              | I <sub>O</sub> =200mA, VIN=8V $\sim$ 20V            | -    | -    | 0.8  | ША    |


LNR: Line Regulation. The change in output voltage for a change in the input voltage. The measurement is made under conditions of low dissipation or by using pulse techniques such that the average chip temperature is not significantly affected.

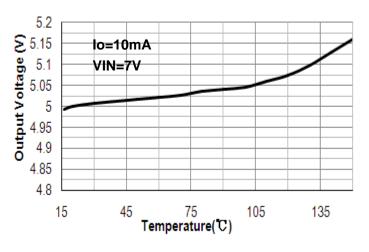
LDR: Load Regulation. The change in output voltage for a change in load current at constant chip temperature.



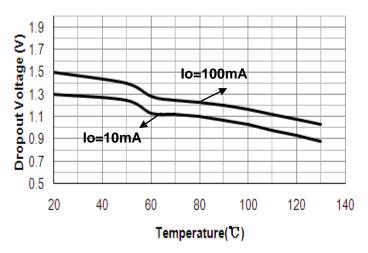

#### **Type Characteristics**







Quiescent Current vs. Input Voltage




Quiescent Current vs. Load

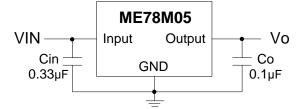


Output Voltage vs. Temperature



Dropout Voltage vs. Temperature

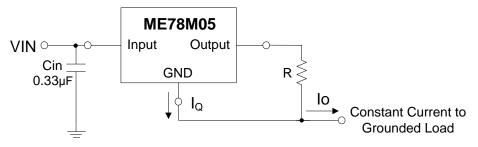





#### **Operation Description**

ME78M05 is designed with Thermal Overload Protection that shuts down the circuit when subjected to an excessive power overload condition, Internal Short Circuit Protection that limits the maximum current the circuit will pass, and Output Transistor Safe-Area Compensation that reduces the output short circuit current as the voltage across the pass transistor is increased.

In many low current applications, compensation capacitors are not required. However, it is recommended that the regulator input be bypassed with a capacitor if the regulator is connected to the power supply filter with long wire lengths, or if the output load capacitance is large. An input bypass capacitor should be selected to provide good high frequency characteristics to insure stable operation under all load conditions. A 0.33µFor larger tantalum, mylar, or other capacitor having low internal impedance at high frequencies should be chosen. The bypass capacitor should be mounted with the shortest possible leads directly across the regulator's input terminals. Normally good construction techniques should be used to minimize ground loops and lead resistance drops since the regulator has no external sense lead.


#### **Typical Application Circuit**

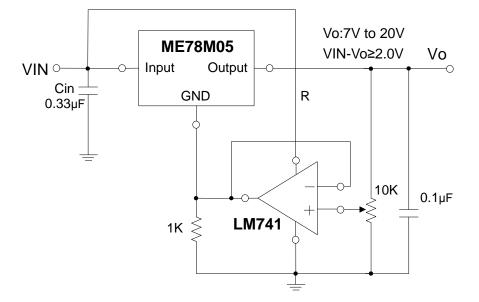


#### Fig.1 Fixed Output Regulator

Note:a.Cin is required if the regulator is located an appreciable distance from the power supply filter.

b.Although no output capacitor is needed for stability, it does improve transient response.

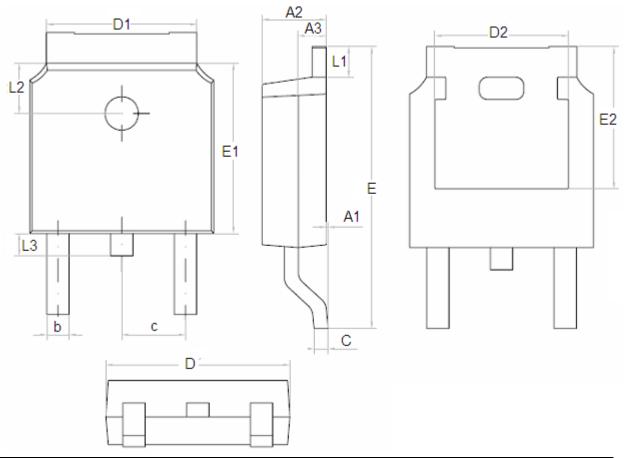



#### Fig.2 Constant Current Regulator

The ME78M05 regulatorcan also be used as a current source when connected as Fig.2. In order to minimize

dissipation the ME78M05 is chosen in this application. Resistor R determines the current as follows:

$$I_0 = \frac{5V}{R} + I_Q$$






The addition of an operational amplifier allows adjustment to higher or intermediate values while retaining regulation characteristics. The minimum voltage obtainable with this arrangement is 2.0 V greater than the regulator voltage.



### Package Information Package Type:TO-252




|     | Millin | neters | Ir     | nches  |
|-----|--------|--------|--------|--------|
| DIM | Min    | Max    | Min    | Max    |
| A1  | 0      | 0.1    | 0      | 0.004  |
| A2  | 2.20   | 2.40   | 0.0866 | 0.0945 |
| A3  | 0.90   | 1.10   | 0.0354 | 0.0433 |
| b   | 0.75   | 0.85   | 0.0295 | 0.0335 |
| С   | 2.20   | 2.40   | 0.0866 | 0.0945 |
| С   | 0.50   | 0.60   | 0.0197 | 0.0236 |
| D   | 6.50   | 6.70   | 0.2559 | 0.2638 |
| D1  | 5.30   | 5.50   | 0.2087 | 0.2165 |
| D2  | 4.70   | 4.90   | 0.1850 | 0.1929 |
| E   | 9.90   | 10.30  | 0.3898 | 0.4055 |
| E1  | 6.00   | 6.20   | 0.2362 | 0.2441 |
| E2  | 5.20   | 5.40   | 0.2047 | 0.2126 |
| L1  | 0.90   | 1.25   | 0.0354 | 0.0492 |
| L2  | 1.70   | 1.90   | 0.0669 | 0.0748 |
| L3  | 0.60   | 1.00   | 0.0236 | 0.0394 |



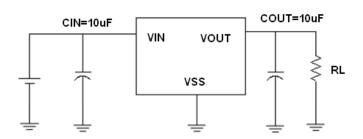
- The information described herein is subject to change without notice.
- Nanjing Micro One Electronics Inc is not responsible for any problems caused by circuits or diagrams described herein whose related industrial properties, patents, or other rights belong to third parties. The application circuit examples explain typical applications of the products, and do not guarantee the success of any specific mass-production design.
- Use of the information described herein for other purposes and/or reproduction or copying without the express permission of Nanjing Micro One Electronics Inc is strictly prohibited.
- The products described herein cannot be used as part of any device or equipment affecting the human body, such as exercise equipment, medical equipment, security systems, gas equipment, or any apparatus installed in airplanes and other vehicles, without prior written permission of Nanjing Micro One Electronics Inc.
- Although Nanjing Micro One Electronics Inc exerts the greatest possible effort to ensure high quality and reliability, the failure or malfunction of semiconductor products may occur. The user of these products should therefore give thorough consideration to safety design, including redundancy, fire-prevention measures, and malfunction prevention, to prevent any accidents, fires, or community damage that may ensue.







# 1.0A Adjustable Voltage High Speed LDO Regulators ME1117 Series


### **General Description**

ME1117 series are highly accurate, low noise, LDO Voltage Regulators that are capable of providing an output current that is in excess of 1.0 A with a maximum dropout voltage of 1.3 V at 1.0A. This series contains six fixed output voltages of 1.2 V, 1.5V,1.8 V, 2.5 V, 3.3 V, and 5.0 V that have no minimum load requirement to maintain regulation. Also included is an adjustable output version that can be programmed from 1.25 V to 20 V with two external resistors. On chip trimming adjusts the reference/output voltage to within ±2.0% accuracy. Internal protection features consist of output current limiting, safe operating area compensation, and thermal shutdown. The ME1117 series can operate with up to 20 V input.

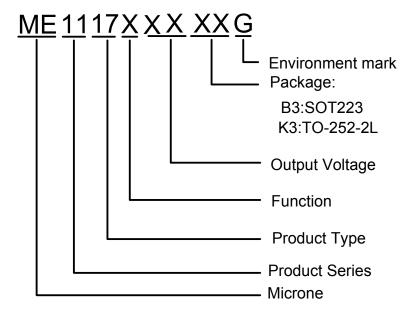
# **Typical Application**

- Consumer and Industrial Equipment Point of Regulation
- Switching Power Supply Post Regulation
- Hard Drive Controllers
- Battery Chargers

# **Typical Application Circuit**



#### Features

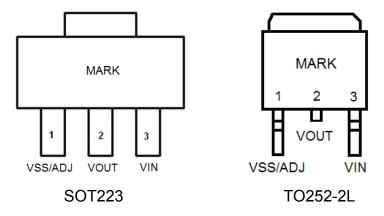

- Output Current in Excess of 1.0A
- Dropout Voltage: 1.07V@ I<sub>OUT</sub> =100mA
- Operating Voltage Range: 4.8V~20V (ME1117A33)
- Highly Accuracy: ±2%
- Adjustable Output Voltage Option
- Standby Current: 3mA (TPY.)
- High Ripple Rejection: 60dB@1KHz(ME1117A33)
- Line Regulation: 0.1% (TYP.)
- Temperature Stability ≤ 0.5%
- Current Limit (1.3A)
- Thermal Shutdown Protection (160°C)

#### Package

• 3-pin SOT223、、TO-252-2L



### **Selection Guide**




| product series | product description                        |
|----------------|--------------------------------------------|
| ME1117A15B3G   | V <sub>OUT</sub> =1.5V; Package: SOT223    |
| ME1117A18B3G   | V <sub>OUT</sub> =1.8V; Package: SOT223    |
| ME1117A25B3G   | V <sub>OUT</sub> =2.5V; Package: SOT223    |
| ME1117A33B3G   | V <sub>OUT</sub> =3.3V; Package: SOT223    |
| ME1117A50B3G   | V <sub>OUT</sub> =3.3V; Package: SOT223    |
| ME1117A33K3G   | V <sub>OUT</sub> =3.3V; Package: TO-252-2L |
| ME1117A50K3G   | V <sub>OUT</sub> =3.3V; Package: TO-252-2L |
| ME1117FB3G     | V <sub>FB</sub> =1.25V; Package: SOT223    |

**NOTE:** At present ,there are six kinds of voltage value:1.25V (VFB) 1.5V 1.8V 2.5V 3.3V 5.0V If you need other voltage and package, please contact our sales staff.

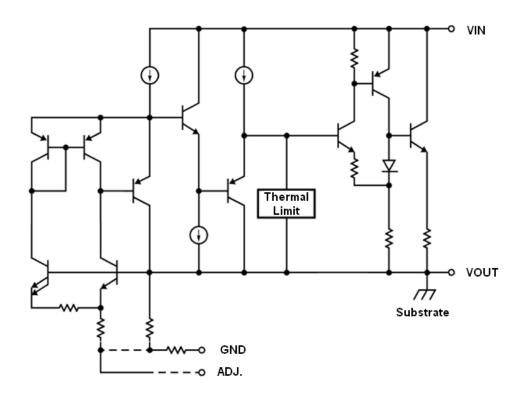


# **Pin Configuration**



# **Pin Assignment**

#### ME1117A


| Pin Number | Pin Name         | Functions         |
|------------|------------------|-------------------|
| 1          | V <sub>SS</sub>  | Ground            |
| 2          | V <sub>OUT</sub> | Output            |
| 3          | V <sub>IN</sub>  | Power Input       |
| ME1117F    |                  |                   |
| Pin Number | Pin Name         | Functions         |
| 1          | V <sub>ADJ</sub> | Adjustable Output |
| 2          | V <sub>OUT</sub> | Output            |
| 3          | V <sub>IN</sub>  | Power Input       |

# Absolute Maximum Ratings

| Paramete                                  | er                         | Symbol           | Ratings                      | Units |
|-------------------------------------------|----------------------------|------------------|------------------------------|-------|
| Input Volta                               | Input Voltage              |                  | 20                           | V     |
| Output Curr                               | rent                       | I <sub>OUT</sub> | 1.3                          | А     |
| Output Volt                               | age                        | V <sub>OUT</sub> | Vss-0.3~V <sub>IN</sub> +0.3 | V     |
| Dewer Dissinction                         | SOT223                     | D                | 750                          | mW    |
| Power Dissipation                         | TO252-2L                   | P <sub>D</sub>   | 2000                         | mW    |
| Operating Tempera                         | iture Range                | T <sub>OPR</sub> | -40~+125                     | °C    |
| Storage Temperat                          | Storage Temperature Range  |                  | -40~+150                     | °C    |
| Junction Temperat                         | Junction Temperature Range |                  | 0~+150                       | °C    |
| Lood Tomporaturo                          | SOT223                     |                  | <b>260℃, 4sec</b>            |       |
| Lead Temperature                          | TO252-2L                   |                  | <b>260℃, 10sec</b>           |       |
| Thermal Resistance                        | SOT223                     |                  | 15                           | °C/W  |
| Junction-to-Case                          | TO252-2L                   |                  | 10                           | °C/W  |
| Thermal Resistance<br>Junction-to-Ambient | SOT223                     |                  | 136                          | °C/W  |
| (No heat sink;<br>No air flow)            | TO252-2L                   |                  | 92                           | °C/W  |



# **Block Diagram**



# **Electrical Characteristics**

#### ME1117F

( $V_{IN}=V_{OUT}+1.5V$ ,  $C_{IN}=C_L=10uF$ , Ta=25<sup>O</sup>C ,unless otherwise noted)

| Parameter                    | Symbol                       | Conditions                                                                                                                                     | Min.           | Тур.         | Max.           | Units |
|------------------------------|------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------------|----------------|-------|
| Reference Voltage            | V <sub>REF</sub>             | V <sub>IN</sub> = V <sub>OUT</sub> +1.5V,I <sub>OUT</sub> =10mA<br>10mA≤I <sub>OUT</sub> ≤1A ,<br>V <sub>OUT</sub> +1.5V ≤V <sub>IN</sub> ≤20V | ×0.98<br>×0.98 | 1.25<br>1.25 | ×1.02<br>×1.02 | V     |
| Maximum Output<br>Current    | I <sub>OUTMAX</sub>          | V <sub>IN</sub> = V <sub>OUT</sub> +1.5V                                                                                                       |                | 1000         |                | mA    |
| Minimum Output<br>Current    | I <sub>OUTMIN</sub>          | V <sub>IN</sub> = V <sub>OUT</sub> +1.5V                                                                                                       |                | 2            |                | mA    |
| Line Regulation              | $\Delta V_{\text{REF-LINE}}$ | I <sub>OUT</sub> =10mA<br>V <sub>OUT</sub> +1.5V ≤V <sub>IN</sub> ≤20V                                                                         |                | 0.03         | 0.2            | %     |
| Load Regulation              | $\Delta V_{REF\text{-}LOAD}$ | V <sub>IN</sub> = V <sub>OUT</sub> +1.5V ,0mA≤I <sub>OUT</sub> ≤1A                                                                             |                | 9            | 13             | mV    |
| Adjustment Pin Current       | I <sub>ADJ</sub>             | V <sub>IN</sub> = V <sub>OUT</sub> +1.5V                                                                                                       |                | 12           | 30             | uA    |
| Adjust Pin Current<br>Change |                              | 10mA≤ I <sub>OUT</sub> ≤ 1A,<br>1.5V ≤ V <sub>IN</sub> -V <sub>OUT</sub> ≤ 20V                                                                 |                | 0.2          | 5              | uA    |
| Thermal Shutdown             |                              | Junction Temperature                                                                                                                           |                | 150          |                | °C    |



#### ME1117A12

(V\_{IN}=V\_{OUT}+1.5V,~C\_{IN}=C\_L=10uF,~Ta=25^{O}C ,unless otherwise noted)

| Parameter                   | Symbol                | C                                                                                                                                             | onditions                                                               | Min.           | Тур.       | Max.           | Units |
|-----------------------------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|----------------|------------|----------------|-------|
| Output Voltage              | V <sub>OUT</sub>      | I <sub>OUT</sub> =10mA,V <sub>IN</sub> = V <sub>OUT</sub> +1.5V<br>10mA≤I <sub>OUT</sub> ≤1A,<br>V <sub>OUT</sub> +1.5V ≤V <sub>IN</sub> ≤20V |                                                                         | ×0.98<br>×0.98 | 1.2<br>1.2 | ×1.02<br>×1.02 | V     |
| Maximum Output<br>Current   | I <sub>OUTMAX</sub>   | V <sub>IN</sub> = V <sub>OUT</sub> +1                                                                                                         | l.5V                                                                    |                | 1000       |                | mA    |
| Load Regulation             | $\Delta V_{OUT-LOAD}$ | V <sub>IN</sub> = V <sub>OUT</sub> +1                                                                                                         | l.5V , 0mA≤I <sub>OUT</sub> ≤1A                                         |                | 9          | 15             | mV    |
|                             | V <sub>DIF1</sub>     | I <sub>OUT</sub> =100mA                                                                                                                       |                                                                         |                | 1.05       | 1.10           | V     |
| Dropout Voltage<br>(Note 1) | $V_{DIF2}$            | I <sub>OUT</sub> =500mA                                                                                                                       |                                                                         |                | 1.20       | 1.30           | V     |
| (                           | $V_{DIF3}$            | I <sub>OUT</sub> =1A                                                                                                                          |                                                                         |                | 1.30       | 1.40           | V     |
| Quiescent Current           | I <sub>SS</sub>       | V <sub>IN</sub> = V <sub>OUT</sub> +1                                                                                                         | 1.5V                                                                    |                | 3.3        | 8              | mA    |
| Line Regulation             | $\Delta V_{OUT-LINE}$ |                                                                                                                                               | I <sub>OUT</sub> =10mA,<br>V <sub>OUT</sub> +1.5V ≤V <sub>IN</sub> ≤20V |                | 1          | 6              | mV    |
| Pipple Dejection Pate       |                       | V <sub>IN</sub> = 12V                                                                                                                         | I <sub>OUT</sub> =10mA,1kHZ                                             |                | 65         |                | dB    |
| Ripple Rejection Rate       | PSRR +1Vp-pAC         | +1Vp-pAC                                                                                                                                      | I <sub>OUT</sub> =100mA,1kHZ                                            |                | 60         |                | UD    |
| Thermal Shutdown            | TJ                    | Junctio                                                                                                                                       | Junction Temperature                                                    |                | 150        |                | °C    |

#### ME1117A15

 $(V_{IN}=V_{OUT}+1.5V, C_{IN}=C_{L}=10uF, Ta=25^{O}C, unless_otherwise noted)$ 

| Parameter                   | Symbol                       | Cond                                                                                                                                   | itions                          | Min.           | Тур.       | Max.           | Units |
|-----------------------------|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|----------------|------------|----------------|-------|
| Output Voltage              | V <sub>OUT</sub>             | $I_{OUT}$ =10mA,V <sub>IN</sub> = V <sub>OUT</sub> +1.5V<br>10mA≤I <sub>OUT</sub> ≤1A,<br>V <sub>OUT</sub> +1.5V ≤V <sub>IN</sub> ≤20V |                                 | ×0.98<br>×0.98 | 1.5<br>1.5 | ×1.02<br>×1.02 | V     |
| Maximum Output<br>Current   | I <sub>OUTMAX</sub>          | V <sub>IN</sub> = V <sub>OUT</sub> +1.5V                                                                                               |                                 |                | 1000       |                | mA    |
| Load Regulation             | $\Delta V_{OUT-LOAD}$        | V <sub>IN</sub> = V <sub>OUT</sub> +1.5V                                                                                               | , 0mA≤I <sub>OUT</sub> ≤1A      |                | 12         | 16             | mV    |
|                             | V <sub>DIF1</sub>            | I <sub>OUT</sub> =100mA                                                                                                                |                                 |                | 1.05       | 1.10           | V     |
| Dropout Voltage<br>(Note 1) | $V_{DIF2}$                   | I <sub>OUT</sub> =500mA                                                                                                                |                                 | 1.20           | 1.30       | V              |       |
|                             | V <sub>DIF3</sub>            | I <sub>OUT</sub> =1A                                                                                                                   |                                 | 1.30           | 1.40       | V              |       |
| Quiescent Current           | I <sub>SS</sub>              | V <sub>IN</sub> = V <sub>OUT</sub> +1.5V                                                                                               |                                 |                | 3.3        | 8              | mA    |
| Line Regulation             | $\Delta V_{\text{OUT-LINE}}$ | I <sub>OUT</sub> =10mA,<br>V <sub>OUT</sub> +1.5V ≤V <sub>IN</sub> ≤                                                                   | ≤20∨                            |                | 1          | 6              | mV    |
| Dipple Dejection Date       | PSRR V <sub>IN</sub> = 12V   |                                                                                                                                        | l <sub>out</sub> =10mA,1k<br>HZ |                | 65         |                | dB    |
| Ripple Rejection Rate       |                              | I <sub>OUT</sub> =100mA,1<br>kHZ                                                                                                       |                                 | 60             |            |                |       |
| Thermal Shutdown            | TJ                           | Junction Te                                                                                                                            |                                 | 150            |            | °C             |       |



#### ME1117A18

(V\_{IN}=V\_{OUT}+1.5V, C\_{IN=}C\_L=10uF, Ta=25^{O}C ,unless otherwise noted)

| Parameter                   | Symbol                | C                                                                                                                                      | onditions                                                               | Min.           | Тур.       | Max.           | Units |
|-----------------------------|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|----------------|------------|----------------|-------|
| Output Voltage              | V <sub>OUT</sub>      | $I_{OUT}$ =10mA,V <sub>IN</sub> = V <sub>OUT</sub> +1.5V<br>10mA≤I <sub>OUT</sub> ≤1A,<br>V <sub>OUT</sub> +1.5V ≤V <sub>IN</sub> ≤20V |                                                                         | ×0.98<br>×0.98 | 1.8<br>1.8 | ×1.02<br>×1.02 | V     |
| Maximum Output<br>Current   | I <sub>OUTMAX</sub>   | V <sub>IN</sub> = V <sub>OUT</sub> +1                                                                                                  | .5V                                                                     |                | 1000       |                | mA    |
| Load Regulation             | $\Delta V_{OUT-LOAD}$ | V <sub>IN</sub> = V <sub>OUT</sub> +1                                                                                                  | .5V , 0mA≤I <sub>OUT</sub> ≤1A                                          |                | 13         | 18             | mV    |
| -                           | V <sub>DIF1</sub>     |                                                                                                                                        | I <sub>OUT</sub> =100mA                                                 |                | 1.05       | 1.10           | V     |
| Dropout Voltage<br>(Note 1) | $V_{DIF2}$            | I <sub>оит</sub> =500mA                                                                                                                |                                                                         |                | 1.20       | 1.30           | V     |
|                             | $V_{DIF3}$            | I <sub>OUT</sub> =1A                                                                                                                   |                                                                         |                | 1.30       | 1.40           | V     |
| Quiescent Current           | I <sub>SS</sub>       | V <sub>IN</sub> = V <sub>OUT</sub> +1                                                                                                  | .5V                                                                     |                | 3.5        | 8              | mA    |
| Line Regulation             | $\Delta V_{OUT-LINE}$ |                                                                                                                                        | I <sub>OUT</sub> =10mA,<br>V <sub>OUT</sub> +1.5V ≤V <sub>IN</sub> ≤20V |                | 1          | 6              | mV    |
| Pipple Poinction Pate       | PSRR                  | V <sub>IN</sub> = 12V                                                                                                                  | I <sub>OUT</sub> =10mA,1kHZ                                             |                | 65         |                | dB    |
| Ripple Rejection Rate       | +1Vp-p                | +1Vp-pAC                                                                                                                               | I <sub>OUT</sub> =100mA,1kHZ                                            |                | 60         |                | UD    |
| Thermal Shutdown            |                       | Junction Temperature                                                                                                                   |                                                                         |                | 150        |                | °C    |

#### ME1117A25

(V<sub>IN</sub>= V<sub>OUT</sub>+1.5V,  $C_{IN=}C_L$ =10 $\mu$ F, Ta=25<sup>O</sup>C, unless otherwise noted)

| Parameter                   | Symbol                | Conditions                                                                                                                                    | Min.           | Тур.       | Max.           | Units     |
|-----------------------------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|----------------|------------|----------------|-----------|
| Output Voltage              | V <sub>OUT</sub>      | I <sub>OUT</sub> =10mA,V <sub>IN</sub> = V <sub>OUT</sub> +1.5V<br>10mA≤I <sub>OUT</sub> ≤1A,<br>V <sub>OUT</sub> +1.5V ≤V <sub>IN</sub> ≤20V | ×0.98<br>×0.98 | 2.5<br>2.5 | ×1.02<br>×1.02 | V         |
| Maximum Output<br>Current   | I <sub>OUTMAX</sub>   | V <sub>IN</sub> = V <sub>OUT</sub> +1.5V                                                                                                      |                | 1000       |                | mA        |
| Load Regulation             | $\Delta V_{OUT-LOAD}$ | V <sub>IN</sub> =V <sub>OUT</sub> +1.5V ,<br>0mA≤I <sub>OUT</sub> ≤1000mA                                                                     |                | 17         | 25             | mV        |
|                             | $V_{DIF1}$            | I <sub>OUT</sub> =100mA                                                                                                                       |                | 1.05       | 1.10           | V         |
| Dropout Voltage<br>(Note 1) | $V_{DIF2}$            | I <sub>OUT</sub> =800mA                                                                                                                       |                | 1.20       | 1.30           | V         |
| (                           | $V_{DIF3}$            | I <sub>OUT</sub> =1A                                                                                                                          |                | 1.30       | 1.40           | V         |
| Quiescent Current           | I <sub>SS</sub>       | V <sub>IN</sub> = V <sub>OUT</sub> +1.5V                                                                                                      |                | 3.5        | 8              | mA        |
| Line Regulation             | $\Delta V_{OUT-LINE}$ | I <sub>OUT</sub> =10mA,<br>V <sub>OUT</sub> +1.5V ≤V <sub>IN</sub> ≤20V                                                                       |                | 2          | 6              | mV        |
| Ripple Rejection Rate       | PSRR                  | V <sub>IN</sub> = 12V I <sub>OUT</sub> =10mA,1kHZ                                                                                             |                | 65         |                | dB        |
|                             |                       | +1Vp-pAC I <sub>OUT</sub> =100mA,1kHZ                                                                                                         |                | 60         |                | <u>"D</u> |
| Thermal Shutdown            |                       | Junction Temperature                                                                                                                          |                | 150        |                | °C        |



#### ME1117A33

(V<sub>IN</sub>= V<sub>OUT</sub>+1.5V,  $C_{IN}=C_L=10 \mu F$ , Ta=25<sup>O</sup>C, unless otherwise noted)

| Parameter                   | Symbol                       | Conditions                                                                      |                                | Min.           | Тур.       | Max.           | Units |
|-----------------------------|------------------------------|---------------------------------------------------------------------------------|--------------------------------|----------------|------------|----------------|-------|
| Output Voltage              | V <sub>OUT</sub>             | I <sub>OUT</sub> =10mA,\<br>10mA≤I <sub>OUT</sub> ≤<br>V <sub>OUT</sub> +1.5V ≤ |                                | ×0.98<br>×0.98 | 3.3<br>3.3 | ×1.02<br>×1.02 | V     |
| Maximum Output<br>Current   | I <sub>OUTMAX</sub>          | V <sub>IN</sub> = V <sub>OUT</sub> +1                                           | .5V                            |                | 1000       |                | mA    |
| Load Regulation             | $\Delta V_{\text{OUT-LOAD}}$ | V <sub>IN</sub> = V <sub>OUT</sub> +1                                           | .5V , 0mA≤I <sub>OUT</sub> ≤1A |                | 24         | 33             | mV    |
|                             | $V_{DIF1}$                   | I <sub>OUT</sub> =100mA                                                         |                                |                | 1.07       | 1.10           | V     |
| Dropout Voltage<br>(Note 1) | $V_{DIF2}$                   | I <sub>OUT</sub> =800mA                                                         |                                |                | 1.20       | 1.30           | V     |
|                             | $V_{DIF3}$                   | I <sub>OUT</sub> =1A                                                            |                                |                | 1.30       | 1.40           | V     |
| Quiescent Current           | I <sub>SS</sub>              | V <sub>IN</sub> = V <sub>OUT</sub> +1                                           | .5V                            |                | 3.5        | 8              | mA    |
| Line Regulation             | $\Delta V_{OUT-LINE}$        | I <sub>OUT</sub> =10mA,<br>V <sub>OUT</sub> +1.5V ≤V <sub>IN</sub> ≤20V         |                                |                | 2          | 6              | mV    |
| Dianla Dejection Date       |                              | $V_{IN} = 12V$                                                                  | I <sub>OUT</sub> =10mA,1kHZ    | 65             |            |                | ٩D    |
| Ripple Rejection Rate       | PSRR +1Vp-pA                 | +1Vp-pAC                                                                        | I <sub>OUT</sub> =100mA,1kHZ   |                | 60         |                | dB    |
| Thermal Shutdown            |                              | Junction Temperature                                                            |                                |                | 150        |                | °C    |

#### ME1117A50

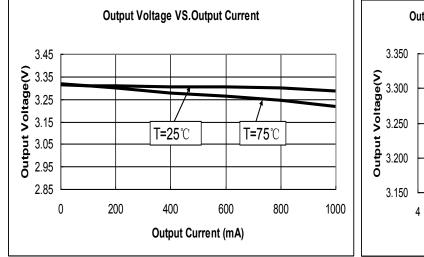
( $V_{IN} = V_{OUT} + 1.5V$ ,  $C_{IN} = C_L = 10 \mu F$ , Ta=25<sup>O</sup>C, unless otherwise noted)

| Parameter                   | Symbol                | C                                                                                                                                      | onditions                      | Min.           | Тур.       | Max.           | Units |
|-----------------------------|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|----------------|------------|----------------|-------|
| Output Voltage              | V <sub>OUT</sub>      | $I_{OUT}$ =10mA,V <sub>IN</sub> = V <sub>OUT</sub> +1.5V<br>10mA≤I <sub>OUT</sub> ≤1A,<br>V <sub>OUT</sub> +1.5V ≤V <sub>IN</sub> ≤20V |                                | ×0.98<br>×0.98 | 5.0<br>5.0 | ×1.02<br>×1.02 | V     |
| Maximum Output<br>Current   | I <sub>OUTMAX</sub>   | V <sub>IN</sub> = V <sub>OUT</sub> +1.5V                                                                                               |                                |                | 1000       |                | mA    |
| Load Regulation             | $\Delta V_{OUT-LOAD}$ | V <sub>IN</sub> = V <sub>OUT</sub> +1                                                                                                  | .5V , 0mA≤l <sub>OUT</sub> ≤1A |                | 35         | 50             | mV    |
|                             | V <sub>DIF1</sub>     | I <sub>OUT</sub> =100mA                                                                                                                |                                |                | 1.05       | 1.10           | V     |
| Dropout Voltage<br>(Note 1) | V <sub>DIF2</sub>     | I <sub>OUT</sub> =800mA                                                                                                                |                                |                | 1.20       | 1.30           | V     |
|                             | V <sub>DIF3</sub>     | I <sub>OUT</sub> =1A                                                                                                                   |                                |                | 1.30       | 1.40           | V     |
| Quiescent Current           | I <sub>SS</sub>       | V <sub>IN</sub> = V <sub>OUT</sub> +1                                                                                                  | .5V                            |                | 3.8        | 8              | mA    |
| Line Regulation             | $\Delta V_{OUT-LINE}$ | I <sub>OUT</sub> =10mA<br>V <sub>OUT</sub> +1.5V ≤V <sub>IN</sub> ≤20V                                                                 |                                |                | 2          | 10             | mV    |
| Ripple Rejection Rate       | PSRR                  | $V_{IN} = 12V$                                                                                                                         | I <sub>OUT</sub> =10mA,1kHZ    |                | 65         |                | dB    |
|                             | FORK                  | +1Vp-pAC                                                                                                                               | I <sub>OUT</sub> =100mA,1kHZ   |                | 60         |                |       |
| Thermal Shutdown            |                       | Junctio                                                                                                                                | on Temperature                 |                | 150        |                | °C    |

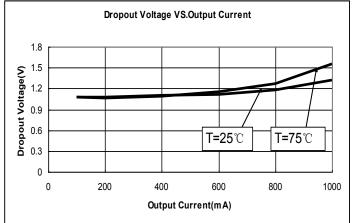
Note : 1 .V<sub>DIF</sub>:  $V_{IN1}$  – $V_{OUT}$  (E)'

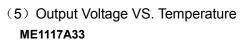
 $V_{IN1}$ : The input voltage when  $V_{OUT}(E)$ ' appears as input voltage is gradually decreased.

 $V_{OUT}$  (E)'=A voltage equal to 99% of the output voltage whenever an amply stabilized lout and { $V_{OUT}$  (T)+1.5V} is input.




## **Type Characteristics**

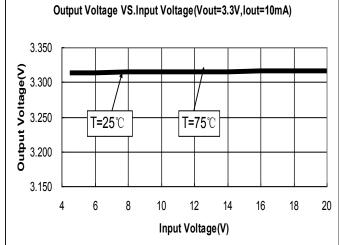

(1) Output Voltage VS. Output Current


 $(V_{IN}=V_{OUT}+1.5V)$ 

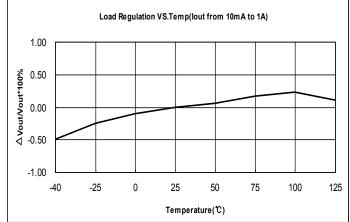

#### ME1117A33



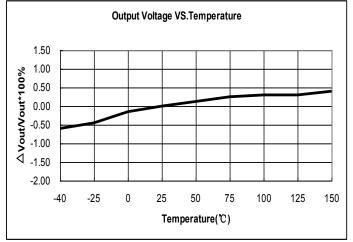
<sup>(3)</sup> Dropout Voltage VS. Output Current **ME1117A33** 





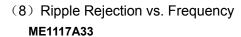

# (2) Output Voltage VS. Input Voltage (Vout=3.3V , $I_{OUT}$ =10mA)

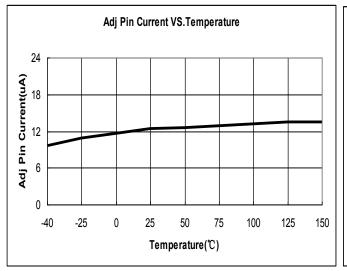

#### ME1117A33

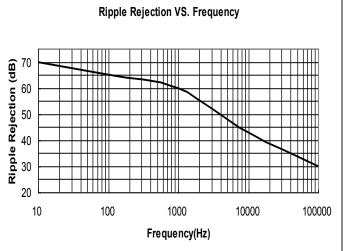


(4) Load Regulation VS.Temp(lout from 10mA to 1A) ME1117A33



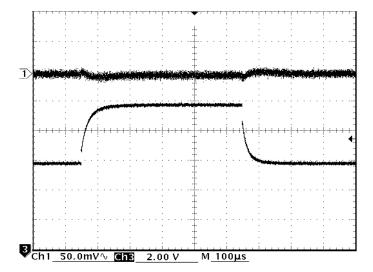

(6) Output Voltage Change VS. Temperature ME1117A33



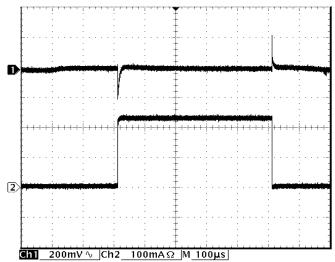

# ME1117

# (7) Adj Pin Current VS.Temperature ME1117F









# (9) Line Transient Response **ME1117A33**

| Ch1:               | Output Voltage              | Ch3:     | Input Voltage |
|--------------------|-----------------------------|----------|---------------|
| V <sub>IN</sub> =8 | V∼12V,I <sub>OUT</sub> =0mA | .,Ta = 2 | 25 °C         |

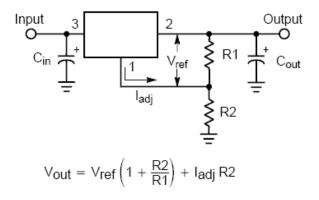


# (10) Load Transient Response **ME1117A33**

Ch1: Output Voltage Ch2: Load Current V<sub>IN</sub>=4.8V, I<sub>OUT</sub>=0mA  $\sim$ 240mA,Ta = 25 °C





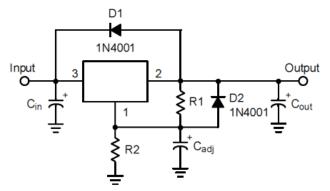

## **Applications Information**

#### Introduction

The ME1117 features a significant reduction in dropout voltage along with enhanced output voltage accuracy and temperature stability when compared to older industry standard three-terminal adjustable regulators.

#### > Output Voltage

The typical application circuit for adjustable output regulator is shown in following Figure. They develop and maintain the nominal 1.25 V reference voltage between the output and adjust pins. The reference voltage is programmed to a constant current source by resistor R1, and this current flows through R2 to ground to set the output voltage. The programmed current level is usually selected to be greater than the specified 3.0mA minimum that is required for regulation. Since the adjust pin current, I<sub>ADJ</sub>, is significantly lower and constant with respect to the programmed load current, it generates a small output voltage error that can usually be ignored.



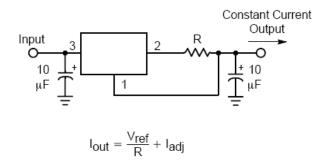

#### External Capacitors

Input bypass capacitor  $C_{IN}$  may be required for regulator stability. This capacitor will reduce the circuit's sensitivity when powered from a complex source. A 10uF ceramic or tantalum capacitor should be adequate for most applications. Frequency compensation for the regulator is provided by capacitor  $C_{OUT}$  and its use is mandatory to ensure output stability. A minimum capacitance value of 4.7uF with an equivalent series resistance (ESR) that is within the limits of 0.25 ohm to 2.2 ohm is required. Higher values of output capacitance can be used to enhance loop stability and transient response with the additional benefit of reducing output noise. The output ripple will increase linearly for fixed and adjustable devices as the ratio of output voltage to the reference voltage increases.

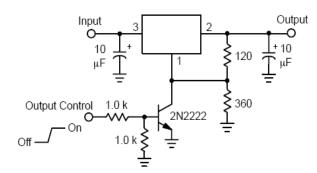
#### Protection Diodes

The ME1117 has two internal low impedance diode paths that normally do not require protection when used in the typical regulator applications. The first path connects between  $V_{OUT}$  and  $V_{IN}$ , and it can withstand a peak surge current of about 15 A. Only when  $V_{IN}$  is shorted to ground and  $C_{OUT}$  is greater than 100uF, it becomes possible for device damage to occur. Under these conditions, diode D1 is required to protect the device. The second path connects between  $C_{ADJ}$  and  $V_{OUT}$ , and it can withstand a peak surge current of about 150mA. Protection diode D2 is required if the output is shorted to ground and  $C_{ADJ}$  is greater than 10uF.

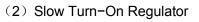


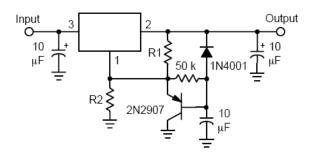

#### Thermal Considerations

This series contains an internal thermal limiting circuit that is designed to protect the regulator in the event that the maximum junction temperature is exceeded. When activated, typically at 175°C, the regulator output switches off and then back on as the die cools.

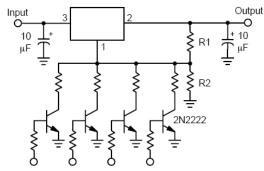



# **Other Application Circuit**


(1) Constant Current Regulator




(3) Regulator with Shutdown

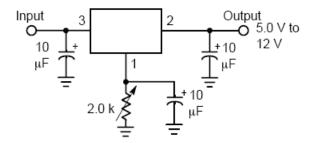



(5) Battery Backed-Up Power Supply





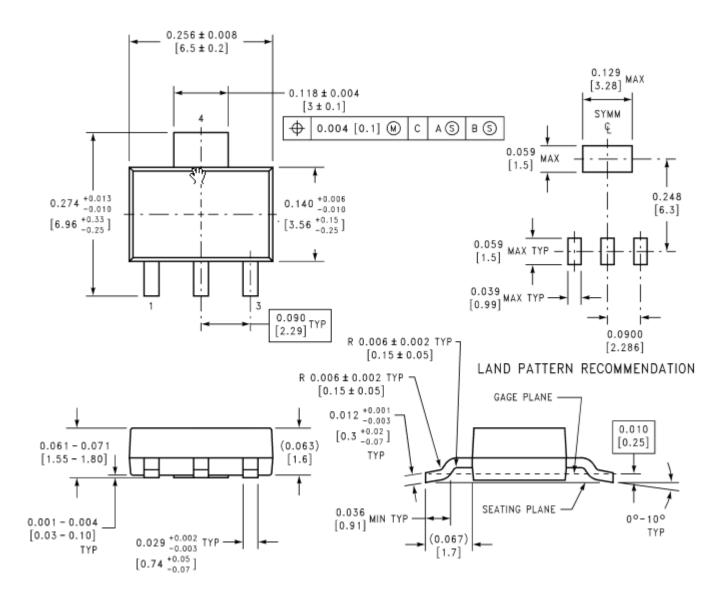
(4) Digitally Controlled Regulator




Resistor R2 sets the maximum output voltage. Each transistor reduces the output voltage when turned on.

(6) Adjusting Output of Fixed Voltage Regulators

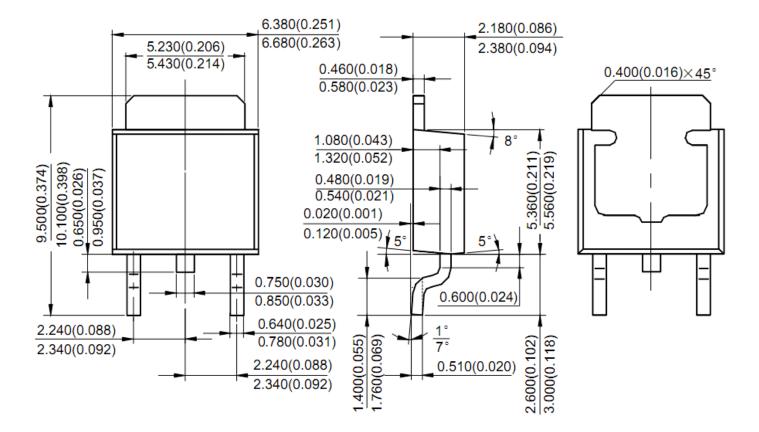


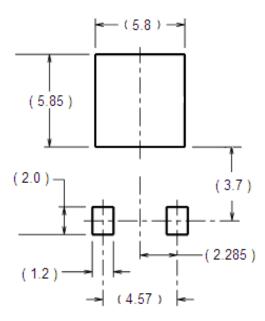

The 50 ohm resistor that is in series with the ground pin of the upper regulator level shifts its output 300 mV higher than the lower regulator. This keeps the lower regulator off until the input source is removed.





# **Packaging Information**


• SOT223








#### • TO252-2L





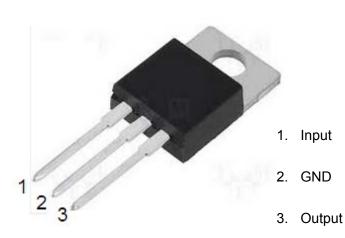
LAND PATTERN RECOMMENDATION



- The information described herein is subject to change without notice.
- Nanjing Micro One Electronics Inc is not responsible for any problems caused by circuits or diagrams described herein whose related industrial properties, patents, or other rights belong to third parties. The application circuit examples explain typical applications of the products, and do not guarantee the success of any specific mass-production design.
- Use of the information described herein for other purposes and/or reproduction or copying without the express permission of Nanjing Micro One Electronics Inc is strictly prohibited.
- The products described herein cannot be used as part of any device or equipment affecting the human body, such as exercise equipment, medical equipment, security systems, gas equipment, or any apparatus installed in airplanes and other vehicles, without prior written permission of Nanjing Micro One Electronics Inc.
- Although Nanjing Micro One Electronics Inc exerts the greatest possible effort to ensure high quality and reliability, the failure or malfunction of semiconductor products may occur. The user of these products should therefore give thorough consideration to safety design, including redundancy, fire-prevention measures, and malfunction prevention, to prevent any accidents, fires, or community damage that may ensue.



# **1.2A 3-Terminal Positive Voltage Regulator ME7805**


#### **General Description**

ME7805 is three-terminal positive regulators. One of these regulators can deliver up to 1.2A of output current. The internal limiting and thermal -shutdown features of the regulator make them essentially immune to overload. When used as a replacement for a zener diode-resistor Combination, an effective improvement in output impedance can be obtained, together with lower quiescent current.

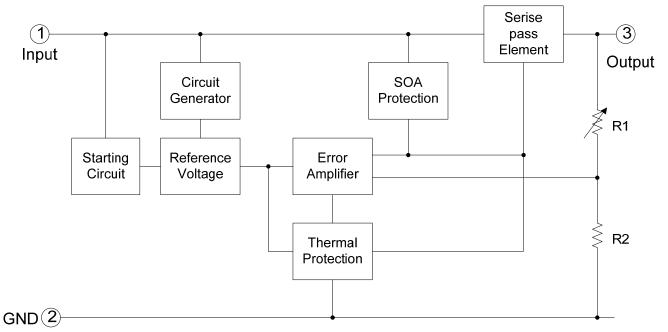
#### **Pin Configuration**

#### Features

- •Output Current of 1.2A
- •Output Voltages of 5V±5% over the temperature range
- •Thermal Overload Protection
- Short Circuit Protection
- •Output transistor safe area protection
- No external components
- •Package: TO-220



#### Maximum Ratings(Ta=25℃)


| Parameter                                    | Rating                 | Unit |
|----------------------------------------------|------------------------|------|
| Input supply voltage : VIN                   | 35                     | V    |
| MAX. Output current:lout                     | 1200                   | mA   |
| Maximum junction temperature: T <sub>j</sub> | -25~125                | °C   |
| Storage temperature :T <sub>str</sub>        | -65~150                | °C   |
| Soldering temperature and time               | +260 (Recommended 10S) | °C   |

Caution: The absolute maximum ratings are rated values exceeding which the product could suffer physical damage.

These values must therefore not be exceeded under any conditions.



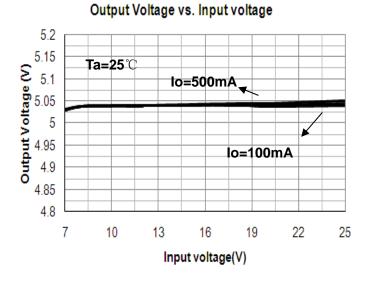
#### **Block Diagram**

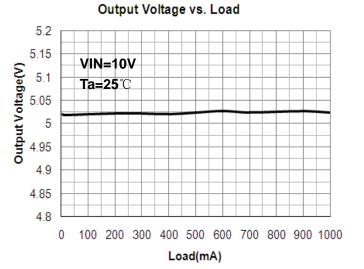


#### **Electrical Characteristics**

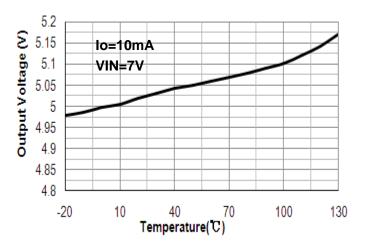
(Cin =0.33 $\mu$ F, Co =0.1 $\mu$ F,0 $\leq$ Tj $\leq$ 125 $^{\circ}$ C, unless otherwise noted)

| Parameter            | Symbol         | Conditions                                         | Min. | Тур. | Max. | Unit  |
|----------------------|----------------|----------------------------------------------------|------|------|------|-------|
|                      |                | I <sub>0</sub> =500mA, VIN=10V                     | 4.8  | 5.0  | 5.25 |       |
| Output Voltage       | Vo             | I <sub>O</sub> =1mA∼1A,Po≤15W<br>VIN=8V∼20V        | 4.65 | 5.0  | 5.35 | V     |
| Line Degulations     | LNR            | VIN=7V~25V,I <sub>0</sub> =500mA                   | -    | 3    | 50   | mV    |
| Line Regulations     | LINK           | VIN=8V~25V,I <sub>0</sub> =500mA                   | -    | 1    | 25   | IIIV  |
| Load Pogulation      | LDR            | VIN=10V,I <sub>0</sub> =5mA-1.2A                   | -    | -    | 100  | mV    |
| Load Regulation      | LDK            | VIN=10V,I <sub>0</sub> =250mA-750mA                | -    | -    | 25   | IIIV  |
| Dropout Voltage      | $V_{DIF}$      | Tj=25 <sup>0</sup> C,Io=100mA                      | -    | 2    | -    | V     |
| Output noise Voltage | V <sub>N</sub> | f=10Hz to 100KHz                                   | -    | 10   | -    | µV/Vo |
| Ripple Rejection     | PSRR           | Tj=25 <sup>o</sup> C,f=120Hz,Io=40mA<br>VIN=8V~20V | -    | 68   | -    | dB    |
| Quiescent Current    | Ι <sub>Q</sub> | VIN=10V,I <sub>OUT</sub> =500mA                    | -    | -    | 6.0  | mA    |
| Quiescent Current    | ΔΙ             | VIN=14.5V~30V,I <sub>0</sub> =500mA                | -    | -    | 0.8  | mA    |
| Change               | $\Delta I_Q$   | VIN=10V,I <sub>0</sub> =5mA~1A,                    | -    | -    | 0.5  | IIIA  |

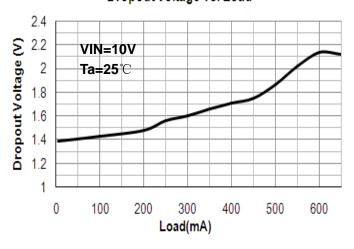

LNR: Line Regulation. The change in output voltage for a change in the input voltage. The measurement is made under conditions of low dissipation or by using pulse techniques such that the average chip temperature is not significantly affected.

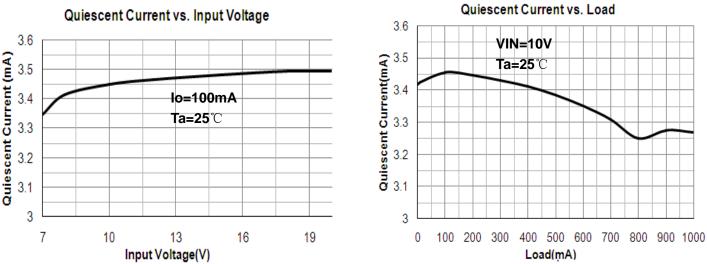

LDR: Load Regulation. The change in output voltage for a change in load current at constant chip temperature.




# ME7805

#### Type Characteristics



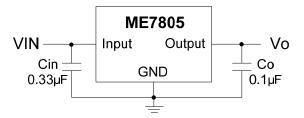

Output Voltage vs. Temperature

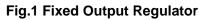


Dropout Voltage vs. Load









#### **Operation Description**

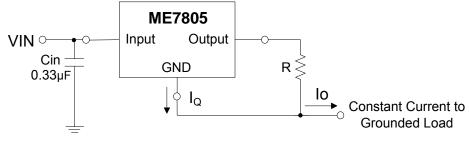
ME7805 is designed with Thermal Overload Protection that shuts down the circuit when subjected to an excessive power overload condition, Internal Short Circuit Protection that limits the maximum current the circuit will pass, and Output Transistor Safe-Area Compensation that reduces the output short circuit current as the voltage across the pass transistor is increased.

In many low current applications, compensation capacitors are not required. However, it is recommended that the regulator input be bypassed with a capacitor if the regulator is connected to the power supply filter with long wire lengths, or if the output load capacitance is large. An input bypass capacitor should be selected to provide good high frequency characteristics to insure stable operation under all load conditions. A 0.33µFor larger tantalum, mylar, or other capacitor having low internal impedance at high frequencies should be chosen. The bypass capacitor should be mounted with the shortest possible leads directly across the regulator's input terminals. Normally good construction techniques should be used to minimize ground loops and lead resistance drops since the regulator has no external sense lead.

#### **Typical Application Circuit**






A common ground is required between the input and the output voltages. The input voltage must remain typically

2.0 V above the output voltage even during the low point on the input ripple voltage.

•Cin is required if regulator is located an appreciable distance from power supply filter.

•Co is not needed for stability; however, it does improve transient response.





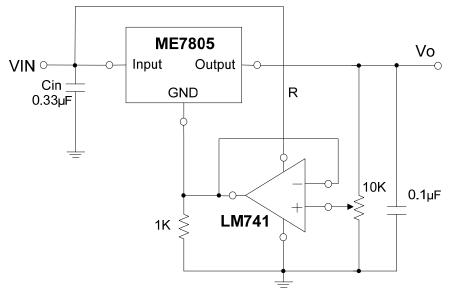
#### Fig.2 Constant Current Regulator

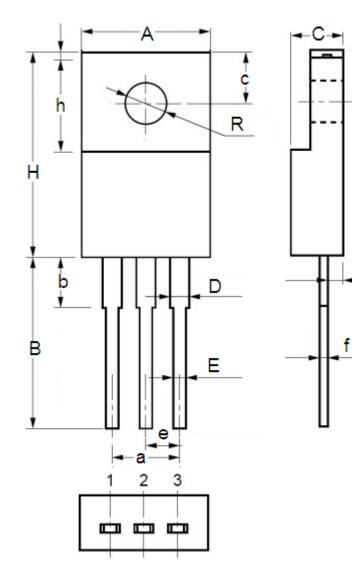
The ME7805 regulatorcan also be used as a current source when connected as Fig.2. In order to minimize

dissipation the ME7805 is chosen in this application. Resistor R determines the current as follows:

$$I_{o} = \frac{5V}{R} + I_{o}$$

 $I_{O} \cong 3.2 \text{mA}$  over line and load changes





Fig.3 Adjustable Output Regulator

The addition of an operational amplifier allows adjustment to higher or intermediate values while retaining regulation characteristics. The minimum voltage obtainable with this arrangement is 2.0 V greater than the regulator voltage.



ME7805

### Package Information Package Type:TO-220



| Symbol | Millimeters |      | Inc     | ches   |
|--------|-------------|------|---------|--------|
| Symbol | Min.        | Max. | Min.    | Max.   |
| А      | 9.8         | 10.2 | 0.386   | 0.4016 |
| а      | 4.58        | 5.58 | 0.1803  | 0.2197 |
| В      | 13.5        | 14.5 | 0.5315  | 0.5709 |
| b      |             | 4.0  | 0.1575  | 5      |
| С      | 4.0         | 4.4  | 0.1575  | 0.1732 |
| с      | 4.0         | 4.4  | 0.1575  | 0.1732 |
| D      | 1.3         | 1.5  | 0.0512  | 0.059  |
| E      | 0.7         | 0.9  | 0.0276  | 0.0354 |
| F      | 1.1         | 1.5  | 0.0433  | 0.059  |
| f      | 0.4         | 0.7  | 0.0157  | 0.0246 |
| н      | 16.4        | 17   | 0.6457  | 0.6693 |
| h      | 7.3         | 7.7  | 0.2874  | 0.3031 |
| R      | Ф3.0        | Ф3.2 | Ф0.1181 | Ф0.126 |

F



- The information described herein is subject to change without notice.
- Nanjing Micro One Electronics Inc is not responsible for any problems caused by circuits or diagrams described herein whose related industrial properties, patents, or other rights belong to third parties. The application circuit examples explain typical applications of the products, and do not guarantee the success of any specific mass-production design.
- Use of the information described herein for other purposes and/or reproduction or copying without the express permission of Nanjing Micro One Electronics Inc is strictly prohibited.
- The products described herein cannot be used as part of any device or equipment affecting the human body, such as exercise equipment, medical equipment, security systems, gas equipment, or any apparatus installed in airplanes and other vehicles, without prior written permission of Nanjing Micro One Electronics Inc.
- Although Nanjing Micro One Electronics Inc exerts the greatest possible effort to ensure high quality and reliability, the failure or malfunction of semiconductor products may occur. The user of these products should therefore give thorough consideration to safety design, including redundancy, fire-prevention measures, and malfunction prevention, to prevent any accidents, fires, or community damage that may ensue.